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I. Introduction

In the problem of hypothesis testing, 'evidence' can be thought of as
a post-experimental (data-based) evaluation of the tenability of the
null hypothesis, HO' To a Bayesian, evidence takes the form of the
posterior probability that H0 is true, while to a frequentist, evidence
takes the form of the p-value, or significance level, of the test. If

the null hypothesis consists of a single point, it has long been known

that these two measures of evidence can greatly differ. The famous
paper of Lindley (1957) illustrates the possible discrepancy in the
normal case.

The question of reconciling these two measures of evidence has been

e T
Lot . ot "

o treated in the literature. For the most part, the two-sided (point null)

problem has been treated, and the major conclusion has been that the

p-value tends to overstate the evidence against H0 (that is,‘the p-value
tends to be smaller than a Bayesian posterior probability). Many references
can be found in Shafer (1982). However Pratt (1965) does state that in the
one-sided testing problem, the p-value is approximately equal to the
posterior probability of HO'

A slightly different approach to the problem of reconciling evidence
was taken by DeGroot (1973). Working in a fairly general setting, DeGroot ?4
constructs alternative distributions and finds improper priors for which

the p-value and posterior probability match. DeGroot assumes that the

-
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alternative distributions are stochastically ordered which, although he does

1

not explicitly state it, essentially puts him in the one-sided testing

‘s

problem,
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Dickey (1977), in the two-sided problem, considers classes of priors,

and examines the infimum of Bayesian evidence against HO‘ As a measure of
Bayesian evidence Dickey uses the "Bayes factor," which is closely related
to the posterior probability of HO. He also concludes that the p-value
overstates the evidence against HO’ even when compared to the infimum of
Bayesian evidence.

A recent paper by J. Berger and T. Sellke (1985) has approached the
problem of reconciling evidence in a manner similar to Dickey's approach.
For the Bayesian measure of evidence they consider the infimum, over a
class of priors, of the posterior probability that H0 is true. For many
classes of priors it turns out that this infimum is much greater than the
frequentist p-value, leading Berger and Sellke to conclude that, "...
significance levels can be highly misleading measures of the evidence
provided by the data against the null hypothesis."

Although their arguments are compelling, and may lead one to question
the worth of p-values, their analyses are restricted to the problem of
testing a point null hypothesis. If, in fact, the p-value is a misleading
measure of evidence, discrepancies with Bayesian measures should emerge

in other hypothesis testing situations.

The point null hypothesis is perhaps the most used and misused
statistical technique. In particular, in the location parameter problem,
the point null hypothesis is more the mathematical convenience rather
than the statistical method of choice. Few experimenters, of whom we are N
aware, want to conclude "there is a difference." Rather, they are looking
to conclude "the new treatment is better." Thus, for the most part, there ;:ju
is a direction of interest in almost any experiment, and saddling an T

experimenter with a two-sided test will not lead to the desired conclusions.

N
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In this paper we consider the problem of reconciling evidence in the
one-sided testing problem. We find, in direct contrast to the results of
Berger and Sellke, that evidence can be reconciled. That is, for many
classes of priors, the infimum of the Bayes posterior probability that H0
is true is either equal to or bounded above by the p-value.

In Section 2 we present some necessary preliminaries, including the
classes of priors we are considering and how they relate to those considered
in the two-sided problem. Section 3 contains the main results concerning
the relationship between Bayesian and frequentist evidence. Section 4
considers classes of priors that are biased toward HO’ and Section 5

contains comments about testing a point null hypothesis.
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ﬂ 2. Preliminaries
We consider testing the hypotheses
. vs. ot P o
' H]: 8 >0

based on observing X = x, where X has location density f(x-~8). Throughout

[; this paper, unless explicitly stated, we assume that

i) f(-) is symmetric about zero

" ii) f(x - 8) has monotone 1ikelihood ratio (mir).

Recall that i) and ii) imply that f(+) is unimodal.

’

If X = x is observed, a frequentist measure of evidence against H0 is

E ) FEECP

given by the p-value

AP
EARRE

v B EEET R . T Te Ty . v

(il 3 . DAY SV T T e Ty e Tali e

A . PO . g y e, P )
. o . - o S

p(x) = P(X > x|6 = 0) = fm F(t)dt . (2.2)
X

A Bayesian measure of evidence, given a prior distribution w(6), is the
probability that H0 is true given X = x,

0

J £(x-0)m(0)do

P(Hylx) = P(6 < 0]x) = : (2.3)
f” f(x-g)r(8)de

Our major point of concern is whether these two measures of evidence
can be reconciled, that is, can the p-value, in some sense, be regarded as i
a Bayesian measure of evidence. Since the p-value is based on the objective }iﬂ
frequentist model, it seems apparent that, if reconciliation is possible, &

it must be based on impartial prior distributions. By impartial we mean

RN NI DM
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that the prior distribution gives equal weight to both the null and
alternative hypotheses.

Four reasonable classes of distributions are given by

G, = {all distributions giving mass %-to (-,0] and (0,=)}

Gg = {all distributions symmetric about zero} (2.4)
GUS = {all unimodal distributions symmetric about zero}

Gyor = {all normal (0,12) distributions, 0 5_12 < e},

For any class of priors, we can obtain a reasonably objective Bayesian
measure of evidence by considering inf P(Holx), where the infimum is taken
over a chosen class of priors. We can then examine the relationship between

this infimum and p(x). If there is agreement, we can conclude that Bayesian

and frequentist evidence can be reconciled.

This development is, of course, similar to that of Berger and Sellke
(1985), who consider the two-sided hypothesis test Hy: @ = 0 vs. Hy: © # 0,
using priors of the form

m ife=20

0
"8 =) (1mga(e) iF o £ 0,

and allow g(-) to vary within a class of distributions, similar to the classes
in (2.4). For any numerical calculations they choose Ty = %3 asserting that
this provides an impartial prior distribution. We will return to this
question in Section 5.

For testing Hy: 6 < 0 vs. Hy: 08>0, we will mainly be concerned with

evidence based on observing x > 0. For x < 0, p(x) > %-and inf P(Holx) = %3

where the infimum is over any of the classes in (2.4). Thus, if x < 0, neither

a frequentist nor a Bayesian would consider the data as having evidence against -

HO, so ther is, in essence, nothing to be reconciled.




3. Syrmetric Prior Distributions

In this section we consider prior distributions contained in the classes
given in (2.4). Our goal is to calculate inf P(Holx) for each of these
classes, and relate the answer to p(x). In some cases we do not calculate
inf P(Holx) exactly, but rather obtain an upper bound on the infimum. This
is accomplished by calculating the infimum exactly for smaller classes of
distributions.

[h For the one-sided testing problem, the class GA is too large to be

[ of use, as the following theorem shows.
! Theorem 3.1: For the hypotheses in (2.1), if x > 0, then

inf P(Holx) =0 .
neGA

Proof: Consider a sequence of priors

T if 8=
me(8) =
g(e) if 8>0
where J g(8)de = %u Then -
0 .
P(Hylx) = flx + k) . :

fx+k) +[: f(x-6)g(6)de

and it is easy to see that lim P(Ho|x) = 0, establishing the result. O
koo

Although we cannot obtain explicit answers for the class GS, we can get

{
e
Lot Lo ab

some interesting results for the smaller class contained in GS,

G2PS = {all two-point distributions symmetric about 0}.
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n For "EGZPS’ we have m(9) = Vi if 8 = +k, and hence =]
= _ f(x+k) i
= PlHglx) = Fhoy+lemy (3.1) :
'il Since f has mir, it follows that, for x > 0, P(Holx) is decreasing in
; k. Therefore, for x > 0,
. v f(x+k) 7
inf P(Holx) = 1im Fodw iRy (3.2)

meGypg
The following theorem establishes that p(x) is an upper bound on this

quantity.

Theorem 3.2: For the hypotheses in (2.1), if x > 0,

inf P(HA|x) < inf  P(H,|x) < p(x) (3.3) )

meG 0™ = e 0™t = :
S 2PS -
Proof: The inequality 1

f{x+k
-k k) < P(x)

r
"1
is equivalent to ]
f(k=x)p(x) - F(k+x)(1-p(x)) > 0 .
To establish (3.3), it suffices to establish the weaker inequality, 1
K
Lim [f(k-x)p(x) - F(k+x)}(1-p(x))] > 0 . (3.4) 7
Now )

f(k-x)p(x) - f(k+x)(1-p(x))

= fzf(k-x)f(x+z) - flk+x)f(-x+2)ldz . (3.5)




8
Let x| = k=X, X, = k+x, e] = 0, and 62 = k-z. The integrand is of the
form f(x]-e])f(xz-ez) - f(xz-e])f(x]-ez). Since x > 0, Xo > Xqs and
ez > 8, if and only if k > z. Thus the fact that f has mir implies
that the integrand is nonnegative if z < k and nonpositive if z > k.
It also folbws from the assumptions on f that 1im f(k-x) = lim f(k+x) exists

koo koo

and equals zero. For z > k, f(k-x)f(x+z) - f(k+x)f(-x+z) < 0 so

'— [ F(k-x)F(x+z) - fk+x)f(-x+z)| < f(k+x)f(-x+z) < f(x)f(-x+z), (3.6)
’

. the last inequality following since f is unimodal and x > 0. Thus, by the
dominated convergence theorem,
. 1im Jw[f(k-x)f(x+z) - f(k+x)f(-x+z)]dz = 0 . (3.7)
| koo Jk
hence,
Tim[f(k-x)p(x) - f(k+x)(1 - p(x))]

koo

K (3.8)
= IimIO[f(k-x)f(x+z) - fk+x)f(-x+2))dz > 0 ,

k=0

establishing (3.4) and proving the theorem. O

The inequality between inf P(Holx) and p(x) is, in fact, strict in
in many cases. Table 1 g?Ses explicit expressions for some common
distributions.

The Cauchy distribution, which does not have mir, does not attain
its infimum at k = » but rather at k = (x2+1)1/2. Even so, it is still
the case that the p-value is greater than inf P(Holx) for the Cauchy

distribution. K

Smmaion vl PP TSP o~ A " - . P VI Y PR P P P T R Y L W L TR N S S -;;‘L-)‘AJ“




Table 1. P-values and inf P(Holx) for the class of
symmetric two-point “distributions (x > 0)

Distribution p(x) inf P(Holx)
normal 1 - o(x) 0
double exponential %-e'x (1+ e2x)-1
logistic (1 + &%) (1 + 27!
h;“ 1 tan”'x 1 + (5f(x2+1)?)2
o Cauchy 2 AN NN
2 + (x=(x"+1)7) "+ (x+(x"+1)7)

We now turn to the class of distributions GUS’ where we again obtain the
[. p-value as an upper bound on the infimum of the Bayesian evidence. We can,
in fact, demonstrate equality between p(x) and inf P(Holx) for two classes

of distributions contained in GUS' We first consider

US = {al1 symmetric uniform distributions}.

Theorem 3.3: For the hypotheses in (2.1), if x > 0,

inf P(Holx) = p(x) .

neUs

Proof: Let w(6) be uniform (-k,k). Then

0
[ f(x-6)de ]
P(Hy[x) = S (3.9) ‘
f(x-9)do

and ~ -

d fx=k)+f (x+k fx+k
HE‘P(HOlX) =( éx ) +f (x+ )) [f(x-kgi;(l+k) - P(Holxﬂ .
f(x-0)de
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. We will now establish that P(Holx), as a function of k, has no minimum on

t] the interior of (0,»). Suppose k = k0 satisfies

gE-P(Holx)]k=k0 =0. (3.11)

It is straight forward to establish that the sign of the second derivative,

P: evaluated at k = kO’ is given by

2
lﬂ d - d f(x+k
) sgn ;E?’P(HOIX) |k=k0 sgn g ?T§3F§1?T%¢E)[k=ko . (3.12)

Since f has mar, the ratio f(x+k)/f(x-k) is decreasing in k for fixed x > 0.

Therefore, the sign of (3.12) is always negative, so any interior extremum
can only be a maximum. The minimum is obtained on the boundary, and it is

straightforward to check that

0
inf P(H,|[x) = Tim -k = f(x-8)ds = p(x) . O
el 0 ko k -0
s f(x-8)do
~k

A similar result can be obtained for another class of distributions,
GMU’ which consists of mixtures of symmetric uniform distributions. Llet G

be the set of all densities g on [0,) such that the scale parameter family

to™19(k/c), o>0} has mir in k. Define
Gyy = (m 7(e) = f:(ZK)']I(_k’k)(e)o']g(k/o)dk, ge6, >0} . =

The class GMU contains many familiar distributions symmetric about zero, -

including all normal and t distributions.

Theorem 3.4: For the hypotheses in (2.1), if x > 0,

g inf P(Hylx) = p (x) . (3.13)
E{ neGMU




sl
o- g
n i
Proof: Let n(e)eGMU. By interchanging the order of integration and using -_,__J
()
the symmetry of f we obtain o
r(ch g(k/c)J f(z)dzdk
=X=-kK ":
P(Hy[x) = i X+k : (3.14) »
r (2ko) g(k/c)J £(z)dzdk -
0 -x=k .
We first show that, for fixed g, o
o ‘
inf P(H [x) = lim P(Holx) . (3.15) :

O<g<e g

For notational convenience define
n(x,0) = f; o Vg (y/a)F(y-x)dy

Since the denominator of (3.14) has derivative equal to h(-x,o)+h(x,c) > 0,

it follows that

d - [ h(-x,0)
Sgn['d'c' P(Holxﬂ B Sgn[h(x o) +h(x,0) P(HOIX{I
We now establish that if P(Holx) has an extremum for 0 < o < », that extremum
must be a maximum. Suppose that o = % satisfies
d ) e
Then e
» : e
d = d th’c)— '., NS
»d (3.16) oy
hi=x,c
= sgn|o— l - . o
-dc h{x,o o-ou] ®
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Since both f(k-x) and c']g(k/c) have mir, it follows from the Basic Composition =
Formula of Karlin (1968, p. 17) that h(x,c) also has mlr. Therefore, since
x > 0, the sign of the last expression in (3.16) is negative, showing that

any interior extremum must be a maximum. We therefore have

...
. . .
 FETIPEY T Ul T S

[Py

inf P(Holx) = min{lim P(Holx), Tim P(Holx)} .
O<g<e o0 g

But from (3.14) it is easily verified, using 1'Hopital's rule, that - 3

Tim P(Hylx) = %, Tim P(Hy|x) = p(x) <u% _ *

o0 g .

Moreover, since we obtain the same infimum, p(x), regardless of the choice

of geG, we have that

inf P(Hylx) = inf inf P(H|x) = inf p(x) = p(x) . O ol
Trs:GMU geG  O<o<w geG _

We can summarize the results of the above two theorems, and the relationship

to Gyg in the following corollary. v

Corollary 3.1: For the hypotheses in (2.1), if x > 0,

inf P(Holx) < inf P(Holx) = inf P(Holx) = p(x) .
m’-:GUs el s neGMU -
This corollary is in striking contrast to the results of Berger and ‘
Sellke (1985). In the two sided problem with a point null hypothesis, they
argued that using impar*ial prior distributions does not lead to any
reconciliation between inf P(Holx) and p(x). In fact, for the cases they
considered, the Bayesian infimum was much greater that p(x). In contrast,
we find that for classes of reasonable, impartial priors, such as GMU’ we T

obtain equality between inf P(Holx) and p(x), showing that, in fact, p(x)

is a conservative measure of evidence against the null hypothesis.
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We close this section by examining two important special cases. In the ]
first case we again obtain equality between p(x) and P(Ho]x). 3
Theorem 3.5: If f(x-8) = (chz)' expi- %{x-e)z/oz}. then for the hypothesis in i?
(2.1), if x > 0, -
inf  P(H|x) = p(x) .
meGhoR :
Proof: The result is easily established by noting ‘
2 ]
P(Hqlx) = P(Z < (?-1—02)4(;—") . 1-n(0,1) ]
which attains its infimum at 12 =o, [ T:
We next consider the Cauchy distribution, to again examine the situation ;i
whgn the assumption of mlr does not obtain. For the class Ugs the symmetric :;
uniform distributions, we calculate inf P(Holx) where f(x-¢) = [n(1+(x-6)2)]-]. ES
For w{6) = Uniform (-k,k) and it is straightforward to calculate iz
-1 -1 -
P(Holx)= tan-](x+k) - tan_](x) . "1
tan (x+k) - tan  (x-k) :
For fixed x > 0, P(Holx) is not monotone in k, but rather attains a unique 3
minimum at a finite value of k. Table 2 1ists the minimizing values of k, ;;
inf P(Holx), and the p-value for selected values of x. y
Examination of Table 2 shows once again that inf P(Holx) is smaller than §£
p(x), this observation held true for more extensive calculations that are ;:

not reported here. Therefore, even in the case of the Cauchy distribution, o
the infimum of the Bayesian measure of evidence is smaller than the

frequentist p-value,




Table 2. P-values and inf P(Holx) for X ~ Cauchy,

. ¢« o e e e e e
O U O O O 00O & DOV O OO AN

BOwW W NN - e
*® e & & 0@ .

infimum over US

kmin
2.363
2.444
2.570
2.727
2.913
3.112
3.323
3.541
3.768
3.994
4,572
5.158
5.746
6.326
7.492
3.175
29.610
56.260
82.429
108.599

p(x)

.437
.379
.328
.285
.250
.221
.197
.178
.161
.148
121
.102
.089
.078
.063
.032
.013
.006
.004
.003

inf P(H |x)

.429
.363
.306
.260
.222
.192
.168
.148
.132
119
.094
.077
.065
.056
.044
.020
.007
.004
.002
.002
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4. Biased Prior Distributions

In this section we examine two cases where the prior distributions
are biased toward HO’ and begin to see some of the reasons for the large
discrepancies between Bayesian and frequentist evidence in the two-sided
case.

Again consider HO: 8 < 0 vs. H]: 8 > 0 where X ~ n(e,oz),o2 known.

Consider the class of priors

2

G, = {n(eo,rz) distributions, 6 < =},

0 < 0 (fixed), 0<
0

0

The class G9 is clearly biased toward HO’ however, if we calculate
inf P(Holx) over this class the result is again p(x).

For any weGe » it is easy to calculate
0

+

P(Hylx) = P(Z < ~(—3%— x

g/t
Y 8,)) » (4.1)

(cP+C)%
where Z ~ n(0,1). For x > 0, P(Holx) is a decreasing function of 12, S0

the infimum is attained at 12 = oo;

inf P(Holx) = P(z < -x/q)
TEG
%

p(x) . (4.2)

The effect of the bias for Hy is diminished at <2 increases, resulting in a
1imit which is independent of 6g- This is a different situation from the
point-null case, where the prior probability on the point null is unaffected
by any 1imiting operation.

We next consider a family of priors in which every member is biased
toward Ho by the same amount. Suppose that an experimenter is willing to
assert, for every k > 0, it is q times more 1ikely that 8e(-k,0) than
8e(0,k). This belief may be reflected in the prior

..........................
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iy Tk<eso

m(8) = 1 . (4.3)
T 0<6 <k

Let Gq denote the class of all of these priors. Then, by an argument similar

to that used in Theorem 2.2, if f(x-8) has mir and x > 0, for testing

Hy: 6 <0 vs. Hi: 6>0 we have
: - gp(x).
inf PHolx) = sty - (4.4)

q

The quantity in (4.4) is greater than p(x) if g > 1 (prior biased toward HO) and
less than p(x) if q < 1 (prior biased toward H]). Therefore, (4.4) is a very
reasonable measure of evidence, taking into account both prior beliefs and sample
information. However, even in this biased case, we do not observe the same
discrepancies as Berger and Sellke did in the point-null problem. For
example, we might ask, "How large must q be in order that inf P(Holx) is
twice as large as p(x)," in order to get some idea of how the bias for Hg
affects the measure of evidence. For p = .01, .05, .1, and various values
of m, we can solve for q such that inf P(Holx) = mp. Some values are
given in Table 3.

For small m, q is approximately equal to m. However for larger values
of m, q increases rapidly, showing that the prior must be very biased

toward H0 in order to achieve a large increase in inf P(Holx).

..........................................................
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- Table 3: For selected p-values, bias toward H0 (q)
ﬂ necessary in order for inf P(Holx) ="mp(x)

4 6 8

6,00 13.50 36.00

4 6 8 10 12 16

4.75 8.14 12.67 19.00 28.50 76.00

4 6 8 10 20 50 75
4.13 6.32 8.61 11.00 24.75 99.00 297.00
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5. Comments

j For the problem of testing a one-sided hypothesis in a location
parameter family, it is possible to reconcile evidence between the Bayesian

_ and frequentist approaches. The frequency p-value is, in many cases, an

. upper bound on P(Holx), showing that it is possible to regard the p-value

’. as assessing "the probability that H0 is true." Even though this phrase has

no meaning within frequency theory, it has been argued that practitioners

sometimes attach such a meaning to the p-value. The results in this paper

T

show that, for testing a one-sided hypothesis, such a meaning can be
attached to the p~value.
] The discrepancies observed by Berger and Sellke in the two-sided
(point null) case do not carry over to the problems considered here. This
leads to the question of determining what factors are crucial in
ii differentiating the two problems. It seems that if prior mass is concentrated
at a point (or in a small interval), then discrepancies between Bayesian
' and frequentist measures will obtain. In fact, Berger and Sellke note
i‘ that for testing HO: 8 =0 vs. H]: 8 > 0, the p-value and the Bayesian

infimum are quite different. (For example, for X . n(6,1), an observed

. x = 1.645 will give a p-value of .05, while, if mass %—is concentrated at
® zero, inf P(Holx = 1.645) = ,21).
Seen in another light, however, it can be argued that placing a point

mass of % at HO is not representative of an impartial prior distribution.

L g .

® For the problem of testing HO: 8 <0 vs. H]: 8 >0, consider priors of the

-
®

r
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form

n(e) = mgh(e) + (1 - my)g(e) (5.1)
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where T is a fixed number, and h(8) and g(8) are proper priors on

(=<, 0) and (0, =) respectively. It then follows that, for x > 0,
0
noj £(x-0)h(8)de
sup P(Hg|x) = sup —5 = (5.1)
h h nof f(x-8)h(6)de +(1-n0)rf(x-e)g(e)de
-0 0

f
- g () (5.2)

wof(x)+(1-ﬂo)I:f(x-e)g(B)de

and the last expression is equal to P(Holx) for the hypotheses HO: 8 =20
vs. Hy: 8>0 with prior m(g) = "o.if 6 =0and n(6) = (1 - wo)g(e) if 8 > 0.
Thus, concentrating mass on the point null hypothesis is biasing the prior
in favor of H0 2s much as possible in this one-sided testing problem.

The calculation in (5.2) casts doubt on the reasonableness of regarding
Ty = %—as impartial. In fact, it is not clear to us if any prior that
concentrates mass at a point can be viewed as an impartial prior.

Therefore, it is not surprising that the p-value and Bayesian evidence

differ in the normal example given above. Setting Ty = %-actua]]y reflects
a bias toward Ho, which is reflected in the Bayesian evidence. fk{ﬁF

To a Bayesian, the fact that evidence can be reconciled with the p-values

.
allows for a Bayesian interpretation of a p-value and the possibility of o]
regarding a p-value as an objective assessment of the probability that HO is _i;;
true. It also, to a Bayesian, gives the p-value a certain amount of :‘“i

respectability. To a frequentist, the p-value (or significance level) has

long been regarded as an objective assessment of the tenability of HO’ an

interpretation that survives even within the Bayesian paradigm. -:}:iﬁ
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